20 resultados para Postprandial Lipaemia

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE--Observational studies show breaking up prolonged sitting has beneficial associations with cardiometabolic risk markers, but intervention studies are required to investigate causality. We examined the acute effects on postprandial glucose and insulin levels of uninterrupted sitting compared with sitting interrupted by brief bouts of light- or moderate-intensity walking.

RESEARCH DESIGN AND METHODS--
Overweight/obese adults (n = 19), aged 45-65 years, were recruited for a randomized three-period, three-treatment acute crossover trial: I) uninterrupted sitting; 2) seated with 2-min bouts of light-intensity walking every 20 rain; and 3) seated with 2-min bouts of moderate-intensity walking every 20 min. A standardized test drink was provided after an initial 2-h period of uninterrupted sitting. The positive incremental area under curves (iAUC) for glucose and insulin (mean [95% CI]) for the 5 h after the test drink (75 g glucose, 50 g fat) were calculated for the respective treatments.

RESULTS--The glucose iAUC (mmol/L) x h after both activity-break conditions was reduced (light: 5.2 [4.1-6.6]; moderate: 4.9 [3.8-6.1]; both P < 0.01) compared with uninterrupted sitting (6.9 [5.5-8.7]). Insulin iAUC (pmol/L) x h was also reduced with both activity-break conditions (light: 633.6 [552.4-727.1]; moderate: 637.6 [555.5-731.9], P < 0.0001) compared with uninterrupted sitting (828.6 [722.0-950.9]).

CONCLUSIONS--Interrupting sitting time with short bouts of light- or moderate-intensity walking lowers postprandial glucose and insulin levels in overweight/obese adults. This may improve glucose metabolism and potentially be an important public health and clinical intervention strategy for reducing cardiovascular risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To compare the cumulative (3-day) effect of prolonged sitting on metabolic responses during a mixed meal tolerance test (MTT), with sitting that is regularly interrupted with brief bouts of light-intensity walking. Overweight/obese adults (n=19) were recruited for a randomized, 3-day, outpatient, cross-over trial involving: (1) 7-h days of uninterrupted sitting (SIT); and (2) 7-h days of sitting with light-intensity activity breaks [BREAKS; 2-min of treadmill walking (3.2 km/h) every 20 min (total: 17 breaks/day)]. On days 1 and 3, participants underwent a MTT (75 g of carbohydrate, 50 g of fat) and the incremental area under the curve (iAUC) was calculated from hourly blood samples. Generalized estimating equation (GEE) models were adjusted for gender, body mass index (BMI), energy intake, treatment order and pre-prandial values to determine effects of time, condition and time × condition. The glucose iAUC was 1.3 ± 0.5 and 1.5 ± 0.5 mmol·h·l(-1) (mean differences ± S.E.M.) higher in SIT compared with BREAKS on days 1 and 3 respectively (condition effect: P=0.001), with no effect of time (P=0.48) or time × condition (P=0.8). The insulin iAUC was also higher on both days in SIT (day 1: ∆151 ± 73, day 3: ∆91 ± 73 pmol·h·l(-1), P=0.01), with no effect of time (P=0.52) or time × condition (P=0.71). There was no between-treatment difference in triglycerides (triacylglycerols) iAUC. There were significant between-condition effects but no temporal change in metabolic responses to MTT, indicating that breaking up of sitting over 3 days sustains, but does not enhance, the lowering of postprandial glucose and insulin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Postprandial lipemia represents a risk factor for chronic diseases, including type 2 diabetes. Little is known about the effect of dietary fat on the plasma lipidome in the postprandial period. OBJECTIVE: The objective of this study was to assess the effect of dairy fat and soy oil on circulating postprandial lipids in men. METHODS: Men (40-60 y old, nonsmokers; n = 16) were randomly assigned in a crossover design to consume 2 breakfast meals of dairy-based or soy oil-based foods. The changes in the plasma lipidome during the 4-h postprandial period were analyzed with electrospray ionization tandem mass spectrometry and included 316 lipid species in 23 classes and subclasses, representing sphingolipids, phospholipids, glycerolipids, and sterols. RESULTS: Nonparametric Friedman tests showed significant changes in multiple plasma lipid classes, subclasses, and species in the postprandial period after both dairy and soy meals. No difference was found in triglyceridemia after each meal. However, 6 endogenous lipid classes increased after dairy but decreased after soy (P < 0.05), including ether-linked phospholipids and plasmalogens and sphingomyelin (not present in soy), dihexosylceramide, and GM3 ganglioside. Phosphatidylcholine and phosphatidylinositol were not affected by the soy meal but were significantly elevated after the dairy meal (8.3% and 16%, respectively; P < 0.05). CONCLUSIONS: The changes in postprandial plasma phospholipids in men relate to the diet composition and the relative size of the endogenous phospholipid pools. Despite similar lipemic responses as measured by changes in triglyceride concentrations, the differential responses to dairy and soy meals derived through lipidomic analysis of phospholipids suggest differences in the metabolism of soybean oil and dairy fat. The increased concentrations of plasmalogens, with potential antioxidant capacity, in the postprandial period after dairy but not soy meals may represent a further important difference in the response to these sources of fat. The trial was registered at www.anzctr.org.au as ACTRN12610000562077.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To determine the effect of adding chickpea flour or extruded chickpea flour to white bread on palatability and postprandial glycaemia, insulinaemia and satiety.

Design: A randomised, single-blind, cross-over study of four 50 g available carbohydrate breakfasts.

Setting: School of Exercise and Nutrition Sciences, Deakin University.

Subjects: In all, 12 healthy subjects were recruited through posted notices. Totally, 11 (nine male, two female) completed the study (meanplusminuss.e.m.; age 32±2 y; body mass index, 24.7±0.8 kg/m2).

Intervention: After overnight fasting, subjects consumed a control (white) bread (WB) breakfast twice, a chickpea bread (CHB) breakfast once and an extruded chickpea bread (EXB) breakfast once. Palatability and postprandial blood glucose, insulin and satiety responses were determined. Following this, food intakes from an ad libitum buffet and for the remainder of the day were assessed.

Results: A trend towards a lower incremental area under the curve (IAUC) of glucose for the CHB breakfast compared to the WB breakfast was observed (P=0.087). The IAUC of insulin and insulinaemic index (II) of the CHB breakfast were higher (P<0.05) than for the WB breakfast. No differences in glycaemic index (GI), satiety response, food intake or palatability were observed.

Conclusions: CHB and EXB demonstrated acceptable palatability. CHB demonstrated some hypoglycaemic effect compared to WB, but neither CHB nor EXB demonstrated effects on satiety or food intake. The hyperinsulinaemic effect of CHB observed in this study requires further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasting forces adaptive changes in whole body and skeletal muscle metabolism that increase fat oxidation and decrease the oxidation of carbohydrate. We tested the hypothesis that 40 h of fasting would decrease pyruvate dehydrogenase (PDH) activity and increase PDH kinase (PDK) isoform mRNA expression in human skeletal muscle. The putative transcriptional activators of PDK isozymes, peroxisome proliferator-activated receptor-α (PPAR-α) protein, and forkhead homolog in rhabdomyosarcoma (FKHR) mRNA were also measured. Eleven healthy adults fasted after a standard meal (25% fat, 60% carbohydrate, 15% protein) with blood and skeletal muscle samples taken at 3, 15, and 40 h postprandial. Fasting increased plasma free fatty acid, glycerol, and β-hydroxybutyrate concentrations and decreased glucose and insulin concentrations. PDH activity decreased from 0.88 ± 0.11 mmol acetyl-CoA · min-1 · kg wet muscle wt-1 at 3 h to 0.62 ± 0.10 (P = not significant) and 0.39 ± 0.06 (P < 0.05) mmol · min-1 · kg wet mass-1 after 15 and 40 h of fasting. Although all four PDK isoforms were expressed in human skeletal muscle, PDK-2 and -4 mRNA were the most abundant. PDK-1 and -3 mRNA abundance was ~1 and 15% of the PDK-2 and 4- levels, respectively. The 40-h fast had no effect on PDK-1, -2, and -3 mRNA expression. PDK-4 mRNA was significantly increased ~3-fold after 15 h and ~14-fold after 40 h of fasting. Skeletal muscle PPAR-α protein and FKHR mRNA abundance were unaffected by the fast. The results suggest that decreased PDH activation after 40 h of fasting may have been a function of the large increase in PDK-4 mRNA expression and possible subsequent increase in PDK protein and activity. The changes in PDK-4 expression and PDH activity did not coincide with increases in the transcriptional activators PPAR-α and FKHR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat generated by the specific dynamic action (SDA) associated with feeding is known to substitute for the thermoregulatory costs of cold-exposed endotherms; however, the effectiveness of this depends on food  temperature. When food is cooler than core body temperature, it is warmed by body heat and, consequently, imposes a thermoregulatory challenge to the animal. The degree to which this cost might be `paid' by SDA depends on the relative timing of food heating and the SDA response. We investigated this phenomenon in two genera of endotherms, Diomedea and Thalassarche albatrosses, by measuring postprandial metabolic rate following ingestion of food at body temperature (40°C) and cooler (0 and 20°C). This permitted us to estimate potential contributions to food warming by SDA-derived heat, and to observe the effect of cold food on metabolic rate. For meal sizes that were ~20% of body mass, SDA was 4.22±0.37% of assimilated food energy, and potentially contributed 17.9±1.0% and 13.2±2.2% of the required heating energy of food at 0°C for Diomedea and Thalassarche albatrosses, respectively, and proportionately greater quantities at higher food temperatures. Cold food increased the rate at which postprandial metabolic rate increased to 3.2–4.5 times that associated with food ingested at body temperature. We also found that albatrosses generated heat in excess by more than 50% of the estimated thermostatic heating demand of cold food, a probable consequence of time delays in physiological responses to afferent signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Low glycemic index (GI) carbohydrates have been linked to increased satiety. The drive to eat may be mediated by postprandial changes in glucose, insulin and gut peptides.
Objective
: To investigate the effect of a low and a high GI diet on day-long (10 h) blood concentrations of glucose, insulin, cholecystokinin (CCK) and ghrelin (GHR).
Design: Subjects (n¼12) consumed a high and a low GI diet in a randomized, crossover design, consisting of four meals that were matched for macronutrients and fibre, and differed only in carbohydrate quality (GI). Blood was sampled every 30–60 min and assayed for glucose, insulin, CCK and GHR.
Results: The high GI diet resulted in significantly higher glucose and insulin mean incremental areas under the curve (IAUC, P¼0.027 and P¼0.001 respectively). CCK concentration was 59% higher during the first 7 h of the low GI diet (394±95 pmol/l min) vs the high GI diet (163±38 pmol/l min, P¼0.046), but there was no difference over 10 h (P¼0.224). GHR concentration was inversely correlated with insulin concentration (Pearson correlation 0.48, P¼0.007), but did not differ significantly between the low and high GI diets.
Conclusions: Mixed meals of lower GI are associated with lower day-long concentrations of glucose and insulin, and higher CCK after breakfast, morning tea and lunch. This metabolic profile could mediate differences in satiety and hunger seen in some, but not all, studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several observational studies have shown that the chronic consumption of high glycaemic index diet is associated with an increased risk of developing metabolic syndrome.  This study was performed to identify the direct influences on the lipid profile and the adipose tissue deposition and the subsequent development of the risk of metabolic syndrome in rats by feeding diets of low glycaemic index (LGI) and high glycaemic index (HGI). Fifty rat weanlings (three weeks old) were equally divided into two groups and fed on either low glycaemic index diet based on high amylose, or isocaloric high glycacmic index diet for 12 weeks. Postprandial blood and tissue samples were collected at the end of the 12 weeks of feeding. The total white adipose tissue weights of the HGl fed rats (24.74 ± 0.53 glrat) were significantly higher than the LGl fed rats (15.37 ± 0.36 gh·at). The HO! led rats had higher postprandial leptin concentrations (1.86 ± 0.17 ng/ml) than LGI fed rats (1.34 ± 0.12 ng/ml). The postprandial insulin, and postprandial insulin glucose ratio were higher in the HGI fed rats (7.06 ± 0.90 ng/ml and 0.67 ± 0.01 ng/mlxmM) compared to the LGl fed rats (3.91 ± 0.4 ng/ml and 0.44 ± 0.01 ng/mlxmM). Triglycerides of the l-IGI fed rats showed higher values (I .56 ± 0.10 mM) than the LO! fed rats (l.07 ± 0.08 mM). The results indicated that LGI feeding was beneficial in preventing the conditions enhancing the cardio vascular disease whereas long-term feeding of HGI diet may increase the risk of developing metabolic syndrome in rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION : Fatigue in sports is often associated with depletion of muscle glycogen storage. Obesity is considered to be a major barrier against physical activity in sports. In order to bring the glycogen storage to a satisfactory level sports persons tend to increase consumption carbohydrates, preferred consumption of high glycemic index (HGI) than low glycemic index (LGI) diets. But HGI foods may promote postprandial carbohydrate oxidation at the expense of fat oxidation and increase body fat gain. LGI diets that produce a low and slow glycemic response may enhance higher glycogen storage instead of fat deposition.

METHODOLOGY :
To test this hypothesis, 30 male Wistar rats after weaning were given either a high glycemic index (HGI) or low glycemic index (LGI) diet for until their age of 12 weeks. Then the subjects were scarified and their plasma, serum, and muscle samples were collected. RESULTS-The study revealed that HGI diets fed rats had higher plasma cholesterol and Leptin (LGI Leptin 1.34 +/- 0.13ng/ml, HGI Leptin 2.12 +/- .20ng/ml) concentrations. It also found the liver and muscle glycogen storage in LGI diets showed higher level (LGI-liver 108 +/-3.0 mg/100g, LGI-muscle 22.6+/- 2.3g/100g) than that of HGI (HGI-liver 96 +/- 2.0mg/100g, HGI-muscle 18+/- 1.5g/100g) diets.

CONCLUSION :
the long term feeding of LGI carbohydrate encourages more glycogen storage while HGI increases fat deposition. Consumption of LGI diets has an advantage over HGI diets of higher physical activity while elevating glycogen storage and reducing chances of obesity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coronary Heart Disease (CHD) is a major cause of death in Western countries. Mediterranean and Asian populations have a lower risk of death from CHD compared to Westernised population, as do vegetarian versus omnivorous populations. Dietary constituents of traditional diets consumed by these populations are thought to influence both the classical risk factors for CHD, and the more recently identified risk factors, such as oxidative modification of low density lipoprotein (LDL), LDL particle size, arterial compliance and haemostatic factors. The aim of this thesis was to examine the effects of several food components, particularly soybean and monounsaturated fat (MUFA), on CHD risk factors through 3 carefully controlled dietary interventions, and a cross-sectional study. A randomised crossover dietary intervention study was conducted in 42 healthy males to investigate the effect on CHD risk factors of replacing lean meat with tofu, a soybean product regularly consumed by Asian populations, while controlling all other dietary factors. The tofu diet resulted in significantly lower total cholesterol and triacylglycerol levels compared to the lean meat diet, and LDL particles that were more resistant to in vitro oxidative modification. However, insulin, fibrinogen, factor VII, and lipoprotein (a) were not significantly different on the 2 diets. A postprandial study was subsequently conducted to investigate any acute effects of a tofu test meal on the oxidative modification of LDL in 16 male subjects. There was no significant difference between the susceptibility of LDL to oxidative modification before and after the tofu meal. Twenty eight healthy subjects completed a separate randomised crossover dietary intervention comparing a high MUFA fat diet, using an Australian high oleic sunflower oil, with a low fat, high carbohydrate diet on CHD risk factors. The high MUFA oil diet significantly increased high density lipoprotein cholesterol compared to the low fat diet as well as producing LDL that were more resistant to oxidative modification. Neither the size of the LDL particle nor arterial compliance were significantly different on the 2 diets. Twelve matched pairs of vegetations and omnivores were also studies to compare the habitual diet of a low and higher risk population group, to compare their risk factors and identify dietary constituents that may explain the differences. The vegetarians consumed less saturated fat (SFA) and dietary cholesterol while consuming more polyunsaturated fat, dietary fibre and vitamin E compared to omnivores. The vegetarians had lower total cholesterol, LDL cholesterol and triacylglycerol levels compared to the omnivores and had LDL particles that were more resistant to in vitro oxidation. These findings contribute to our knowledge about the dietary constituents that can alter some CHD risk factors in healthy subjects, and which could reduce the risk of developing CHD. Investigations in high risk groups might reveal even more benefits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: This study aimed to examine the effect of glycemic index of pre-exercise carbohydrate (CHO) ingestion on exercise metabolism and performance.

Methods: Eight endurance trained men ingested a high glycemic index (HGI), low glycemic index (LGI), or a placebo (CON) meal 45 min before exercise and then cycled for 50 min at 67% V·O2max. Subjects subsequently performed a 15-min self-paced performance ride in which total work (kJ) was recorded.

Results: Plasma glucose concentrations were higher (P < 0.01) after ingestion in HGI compared with LGI and CON (7.53 ± 0.64 vs 5.55 ± 0.21 and 4.65 ± 0.14 mmol·L-1 for HGI, LGI, and CON, respectively, 30 min postprandial; mean ± SE) but declined at the onset of exercise and were lower (P < 0.01) compared with LGI and CON (4.03 ± 0.31 vs 4.64 ± 0.24 and 5.09 ± 0.16 mmol·L-1 for HGI, LGI, and CON respectively; mean ± SE) at 10 min of exercise. Plasma glucose remained depressed (P < 0.01) until 30 min into exercise in HGI compared with other trials. Plasma insulin concentrations were higher (P < 0.01) following ingestion during rest and exercise in HGI compared with LGI and CON. Plasma FFA concentrations were lower (P < 0.05) following ingestion in HGI and LGI compared with CON and higher (P < 0.05) in LGI compared with HGI at the start and end of exercise. RER and CHO oxidation was higher (P < 0.01) in HGI compared with LGI and CON during submaximal exercise. There were no differences in work output during the performance cycle.


Conclusions: These data indicate that pre-exercise CHO feedings with varying glycemic indexes do not affect exercise performance following short term submaximal exercise despite alterations in metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improved and traditional rice varieties grown in Sri Lanka namely, Bg 300, Bg 352, Bg 358, Bg 406, LD 356, Rathkaral, Wedaheenati and Heendikwel were studied for their in vivo glycemic response. Proximate compositions and amylose content of rice were determined according to standard methods and available carbohydrate content was calculated using the difference method. The in vivo glycemic response of selected improved and traditional rice varieties was assessed by determining the glycemic index (GI) using ten healthy subjects. Further, the effect of parboiling of rice on glycemic response was also assessed. The crude protein content was higher in parboiled rice as compared to nonparboiled rice. According to the amylose content, rice varieties studied were classified as intermediate and high amylose rice. The amylose content of Bg 406 was the lowest (20.18% ±0.17) while Rathkaral showed the highest (29%±0.07). The Glycemic index of rice varieties studied ranged from 57±1 to 73± 2. The Wedaheenati variety exhibited the lowest GI while Bg 406 exhibited the highest GI value. Unparboiled Bg 406, LD 356 and parboiled Bg 406 were classified as high GI foods while the rest of the rice varieties studied were categorized as intermediate GI foods. Parboiled rice brought about a reduction in glycemic response in healthy subjects. The maximum reduction of 10% in glycemic index upon parboiling was observed with Bg 352. The traditional rice produced significantly lower (p<0.05) postprandial glycemic effect than did the improved rice. By their low post-prandial glycemic response they could be potentially useful in low GI diets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consumption of a high-fat diet (HFD) by rabbits results in increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA) within 1 wk. Here, we determined how early this activation occurred and whether it was related to changes in cardiovascular and neural 24-h rhythms. Rabbits were meal-fed a HFD for 3 wks, then a normal-fat diet (NFD) for 1 wk. BP, HR, and RSNA were measured daily in the home cage via implanted telemeters. Baseline BP, HR, and RSNA over 24 h were 71 ± 1 mm Hg, 205 ± 4 beats/min and 7 ± 1 normalized units (nu). The 24-h pattern was entrained to the feeding cycle and values increased from preprandial minimum to postprandial maximum by 4 ± 1 mm Hg, 51 ± 6 beats/min, and 1.6 ± .6 nu each day. Feeding of a HFD markedly diminished the preprandial dip after 2 d (79–125% of control; p < 0.05) and this reduction lasted for 3 wks of HFD. Twenty-four-hour BP, HR, and RSNA concurrently increased by 2%, 18%, and 22%, respectively. Loss of preprandial dipping accounted for all of the BP increase and 50% of the RSNA increase over 3 wks and the 24-h rhythm became entrained to the light-dark cycle. Resumption of a NFD did not alter the BP preprandial dip. Thus, elevated BP induced by a HFD and mediated by increased sympathetic nerve activity results from a reduction in preprandial dipping, from the first day. Increased calories, glucose, insulin, and leptin may account for early changes, whereas long-term loss of dipping may be related to increased sensitivity of sympathetic pathways.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using lipidomic methodologies the impact that meal lipid composition and metabolic syndrome (MetS) exerts on the postprandial chylomicron triacylglycerol (TAG) response was examined. Males (9 control; 11 MetS) participated in a randomised crossover trial ingesting two high fat breakfast meals composed of either dairy-based foods or vegetable oil-based foods. The postprandial lipidomic molecular composition of the TAG in the chylomicron-rich (CM) fraction was analysed with tandem mass spectrometry coupled with liquid chromatography to profile CM TAG species and targeted TAG regioisomers. Postprandial CM TAG concentrations were significantly lower after the dairy-based foods compared with the vegetable oil-based foods for both control and MetS subjects. The CM TAG response to the ingested meals involved both significant and differential depletion of TAG species containing shorter-and medium-chain fatty acids (FA) and enrichment of TAG molecular species containing C16 and C18 saturated, monounsaturated and diunsaturated FA. Furthermore, there were significant changes in the TAG species between the food TAG and CM TAG and between the 3- and 5-h postprandial samples for the CM TAG regioisomers. Unexpectedly, the postprandial CM TAG concentration and CM TAG lipidomic responses did not differ between the control and MetS subjects. Lipidomic analysing of CM TAG molecular species revealed dynamic changes in the molecular species of CM TAG during the postprandial phase suggesting either preferential CM TAG species formation and/or clearance.